Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
Ageing Res Rev ; 96: 102290, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38580173

RESUMO

Biomarkers that predict the clinical onset of Alzheimer's disease (AD) enable the identification of individuals in the early, preclinical stages of the disease. Detecting AD at this point may allow for more effective therapeutic interventions and optimized enrollment for clinical trials of novel drugs. The current biological diagnosis of AD is based on the AT(N) classification system with the measurement of brain deposition of amyloid-ß (Aß) ("A"), tau pathology ("T"), and neurodegeneration ("N"). Diagnostic cut-offs for Aß1-42, the Aß1-42/Aß1-40 ratio, tau and hyperphosphorylated-tau concentrations in cerebrospinal fluid have been defined and may support AD clinical diagnosis. Blood-based biomarkers of the AT(N) categories have been described in the AD continuum. Cross-sectional and longitudinal studies have shown that the combination of blood biomarkers tracking neuroaxonal injury (neurofilament light chain) and neuroinflammatory pathways (glial fibrillary acidic protein) enhance sensitivity and specificity of AD clinical diagnosis and improve the prediction of AD onset. However, no international accepted cut-offs have been identified for these blood biomarkers. A kit for blood Aß1-42/Aß1-40 is commercially available in the U.S.; however, it does not provide a diagnosis, but simply estimates the risk of developing AD. Although blood-based AD biomarkers have a great potential in the diagnostic work-up of AD, they are not ready for the routine clinical use.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Proteínas tau , Estudos Transversais , Peptídeos beta-Amiloides , Biomarcadores/líquido cefalorraquidiano
2.
Prog Neurobiol ; 234: 102574, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266702

RESUMO

Historically, aging research has largely centered on disease pathology rather than promoting healthy aging. The World Health Organization's (WHO) policy framework (2015-2030) underscores the significance of fostering the contributions of older individuals to their families, communities, and economies. The WHO has introduced the concept of intrinsic capacity (IC) as a key metric for healthy aging, encompassing five primary domains: locomotion, vitality, sensory, cognitive, and psychological. Past AD research, constrained by methodological limitations, has focused on single outcome measures, sidelining the complexity of the disease. Our current scientific milieu, however, is primed to adopt the IC concept. This is due to three critical considerations: (I) the decline in IC is linked to neurocognitive disorders, including AD, (II) cognition, a key component of IC, is deeply affected in AD, and (III) the cognitive decline associated with AD involves multiple factors and pathophysiological pathways. Our study explores the application of the IC concept to AD patients, offering a comprehensive model that could revolutionize the disease's diagnosis and prognosis. There is a dearth of information on the biological characteristics of IC, which are a result of complex interactions within biological systems. Employing a systems biology approach, integrating omics technologies, could aid in unraveling these interactions and understanding IC from a holistic viewpoint. This comprehensive analysis of IC could be leveraged in clinical settings, equipping healthcare providers to assess AD patients' health status more effectively and devise personalized therapeutic interventions in accordance with the precision medicine paradigm. We aimed to determine whether the IC concept could be extended from older individuals to patients with AD, thereby presenting a model that could significantly enhance the diagnosis and prognosis of this disease.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Disfunção Cognitiva/diagnóstico , Envelhecimento
3.
Mol Psychiatry ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228892

RESUMO

Alzheimer's disease (AD) is currently constrained by limited clinical treatment options. The initial pathophysiological event, which can be traced back to decades before the clinical symptoms become apparent, involves the excessive accumulation of amyloid-beta (Aß), a peptide comprised of 40-42 amino acids, in extraneuronal plaques within the brain. Biochemical and histological studies have shown that overaccumulation of Aß instigates an aberrant escalation in the phosphorylation and secretion of tau, a microtubule-binding axonal protein. The accumulation of hyperphosphorylated tau into intraneuronal neurofibrillary tangles is in turn correlated with microglial dysfunction and reactive astrocytosis, culminating in synaptic dysfunction and neurodegeneration. As neurodegeneration progresses, it gives rise to mild clinical symptoms of AD, which may eventually evolve into overt dementia. Synaptic loss in AD may develop even before tau alteration and in response to possible elevations in soluble oligomeric forms of Aß associated with early AD. These findings largely rely on post-mortem autopsy examinations, which typically involve a limited number of patients. Over the past decade, a range of fluid biomarkers such as neurogranin, α-synuclein, visinin-like protein 1 (VILIP-1), neuronal pentraxin 2, and ß-synuclein, along with positron emission tomography (PET) markers like synaptic vesicle glycoprotein 2A, have been developed. These advancements have facilitated the exploration of how synaptic markers in AD patients correlate with cognitive impairment. However, fluid biomarkers indicating synaptic loss have only been validated in cerebrospinal fluid (CSF), not in plasma, with the exception of VILIP-1. The most promising PET radiotracer, [11C]UCB-J, currently faces significant challenges hindering its widespread clinical use, primarily due to the necessity of a cyclotron. As such, additional research geared toward the exploration of synaptic pathology biomarkers is crucial. This will not only enable their extensive clinical application, but also refine the optimization process of AD pharmacological trials.

4.
Drug Saf ; 46(11): 1089-1103, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37707778

RESUMO

INTRODUCTION: During the signal detection process, statistical methods are used to identify drug-event combinations (DECs) which are disproportionately reported when compared with other drugs and events in the entire database. We hypothesise that the high volume of COVID-19 vaccine adverse drug reaction (ADR) reports transmitted to EudraVigilance may have affected the performance of disproportionality statistics used in routine signal detection, potentially resulting in signals either being masked, or false associations being flagged as potential signals. OBJECTIVE: Our aim was to study the impact of COVID-19 vaccine spontaneous reporting on statistical signal detection in EudraVigilance. METHODS: We recalculated the reporting odds ratio (ROR) for signals that were previously discussed at the level of the Pharmacovigilance Risk Assessment Committee, or signals that were retrieved from EudraVigilance, by omitting COVID-19 vaccine reports from the standard ROR calculation and then comparing the lower confidence interval (LCI) of the recalculated ROR to the LCI of the actual ROR in EudraVigilance. RESULTS: In total, 52 signals for 38 active substances were reviewed. For 35 signals, the LCI of the recalculated ROR value was lower than the LCI of the actual ROR (suggesting that COVID-19 vaccine ADR reporting had a positive effect on the strength of the signal) while for 15 signals the LCI of the recalculated ROR value was higher than the LCI of the actual ROR (suggesting that COVID-19 vaccine ADR reporting had an attenuating effect on the strength of the signal). For two signals, no change in the ROR was observed. In our analysis, six significant results were found. Five DECs were found to be masked: bleomycin and immune thrombocytopenia (actual ROR LCI = 0.94, recalculated ROR LCI = 1.02), vortioxetine and heavy menstrual bleeding (actual ROR LCI = 0.3, recalculated ROR LCI = 1.06), caplacizumab and heavy menstrual bleeding (actual ROR LCI = 0.98, recalculated ROR LCI = 3.47), ziprasidone and amenorrhoea (actual ROR LCI = 0.84, recalculated ROR LCI = 1.67), and azacitidine and pericarditis (actual ROR LCI = 0.81, recalculated ROR LCI = 2.01). For the DEC of adalimumab and immune reconstitution inflammatory syndrome, the LCI of the actual ROR value was 1.14 and removing COVID-19 vaccine reporting resulted in an LCI of the recalculated ROR value of 0.94 (below threshold). CONCLUSIONS: We demonstrated five cases of masking and one case of false-positive association due to the influence of COVID-19 vaccine spontaneous reporting on the ROR. This suggests that the high number of adverse drug reaction reports for COVID-19 vaccines in EudraVigilance has the potential to affect routine statistical signal detection activities. The impact of COVID-19 vaccine ADR reports on current signal detection practices requires further evaluation and solutions to tackle masking issues in EudraVigilance may need to be developed.


Assuntos
COVID-19 , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Menorragia , Feminino , Humanos , Vacinas contra COVID-19/efeitos adversos , Sistemas de Notificação de Reações Adversas a Medicamentos , COVID-19/prevenção & controle , Bases de Dados Factuais , Farmacovigilância
5.
Ageing Res Rev ; 89: 101987, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37343679

RESUMO

Alzheimer's disease (AD) is determined by various pathophysiological mechanisms starting 10-25 years before the onset of clinical symptoms. As multiple functionally interconnected molecular/cellular pathways appear disrupted in AD, the exploitation of high-throughput unbiased omics sciences is critical to elucidating the precise pathogenesis of AD. Among different omics, metabolomics is a fast-growing discipline allowing for the simultaneous detection and quantification of hundreds/thousands of perturbed metabolites in tissues or biofluids, reproducing the fluctuations of multiple networks affected by a disease. Here, we seek to critically depict the main metabolomics methodologies with the aim of identifying new potential AD biomarkers and further elucidating AD pathophysiological mechanisms. From a systems biology perspective, as metabolic alterations can occur before the development of clinical signs, metabolomics - coupled with existing accessible biomarkers used for AD screening and diagnosis - can support early disease diagnosis and help develop individualized treatment plans. Presently, the majority of metabolomic analyses emphasized that lipid metabolism is the most consistently altered pathway in AD pathogenesis. The possibility that metabolomics may reveal crucial steps in AD pathogenesis is undermined by the difficulty in discriminating between the causal or epiphenomenal or compensatory nature of metabolic findings.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Metabolômica/métodos , Metaboloma , Biomarcadores/metabolismo
6.
Alzheimers Dement ; 19(10): 4729-4734, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37079778

RESUMO

Evaluating potential therapies for Alzheimer's disease (AD) depends on use of biomarkers for appropriate subject selection and monitoring disease progression. Biomarkers that predict onset of clinical symptoms are particularly important for AD because they enable intervention before irreversible neurodegeneration occurs. The amyloid-ß-tau-neurodegeneration (ATN) classification system is currently used as a biological staging model for AD and is based on three classes of biomarkers evaluating amyloid-ß (Aß), tau pathology and neurodegeneration or neuronal injury. Promising blood-based biomarkers for each of these categories have been identified (Aß42/Aß40 ratio, phosphorylated tau, neurofilament light chain), and this matrix is now being expanded toward an ATN(I) system, where "I" represents a neuroinflammatory biomarker. The plasma ATN(I) system, together with APOE genotyping, offers a basis for individualized evaluation and a move away from the classic "one size fits all" approach toward a biomarker-driven individualisation of therapy for patients with AD.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides , Biomarcadores , Progressão da Doença , Modelos Biológicos , Proteínas tau
7.
Neural Regen Res ; 18(8): 1679-1683, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36751779

RESUMO

We reviewed recent major clinical trials with investigational drugs for the treatment of subjects with neurodegenerative diseases caused by inheritance of gene mutations or associated with genetic risk factors. Specifically, we discussed randomized clinical trials in subjects with Alzheimer's disease, Huntington's disease and amyotrophic lateral sclerosis bearing pathogenic gene mutations, and glucocerebrosidase-associated Parkinson's disease. Learning potential lessons to improve future therapeutic approaches is the aim of this review. Two long-term, controlled trials on three anti-ß-amyloid monoclonal antibodies (solanezumab, gantenerumab and crenezumab) in subjects carrying Alzheimer's disease-linked mutated genes encoding for amyloid precursor protein or presenilin 1 or presenilin 2 failed to show cognitive or functional benefits. A major trial on tominersen, an antisense oligonucleotide designed to reduce the production of the huntingtin protein in subjects with Huntington's disease, was prematurely interrupted because the drug failed to show higher efficacy than placebo and, at highest doses, led to worsened outcomes. A 28-week trial of tofersen, an antisense oligonucleotide for superoxide dismutase 1 in patients with amyotrophic lateral sclerosis with superoxide dismutase 1 gene mutations failed to show significant beneficial effects but the 1-year open label extension of this study indicated better clinical and functional outcomes in the group with early tofersen therapy. A trial of venglustat, a potent and brain-penetrant glucosylceramide synthase inhibitor, in Parkinson's disease subjects with heterozygous glucocerebrosidase gene mutations revealed worsened clinical and cognitive performance of patients on the enzyme inhibitor compared to placebo. We concluded that clinical trials in neurodegenerative diseases with a genetic basis should test monoclonal antibodies, antisense oligonucleotides or gene editing directed against the mutated enzyme or the mutated substrate without dramatically affecting physiological wild-type variants.

9.
Curr Neuropharmacol ; 21(1): 31-53, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34852743

RESUMO

In oncology, comprehensive omics and functional enrichment studies have led to an extensive profiling of (epi)genetic and neurobiological alterations that can be mapped onto a single tumor's clinical phenotype and divergent clinical phenotypes expressing common pathophysiological pathways. Consequently, molecular pathway-based therapeutic interventions for different cancer typologies, namely tumor type- and site-agnostic treatments, have been developed, encouraging the real-world implementation of a paradigm shift in medicine. Given the breakthrough nature of the new-generation translational research and drug development in oncology, there is an increasing rationale to transfertilize this blueprint to other medical fields, including psychiatry and neurology. In order to illustrate the emerging paradigm shift in neuroscience, we provide a state-of-the-art review of translational studies on the ß-site amyloid precursor protein cleaving enzyme (BACE) and its most studied downstream effector, neuregulin, which are molecular orchestrators of distinct biological pathways involved in several neurological and psychiatric diseases. This body of data aligns with the evidence of a shared genetic/biological architecture among Alzheimer's disease, schizoaffective disorder, and autism spectrum disorders. To facilitate a forward-looking discussion about a potential first step towards the adoption of biological pathway-based, clinical symptom-agnostic, categorization models in clinical neurology and psychiatry for precision medicine solutions, we engage in a speculative intellectual exercise gravitating around BACE-related science, which is used as a paradigmatic case here. We draw a perspective whereby pathway-based therapeutic strategies could be catalyzed by highthroughput techniques embedded in systems-scaled biology, neuroscience, and pharmacology approaches that will help overcome the constraints of traditional descriptive clinical symptom and syndrome-focused constructs in neurology and psychiatry.


Assuntos
Doença de Alzheimer , Neurologia , Psiquiatria , Humanos , Secretases da Proteína Precursora do Amiloide , Ácido Aspártico Endopeptidases/metabolismo , Doença de Alzheimer/tratamento farmacológico , Precursor de Proteína beta-Amiloide
10.
Ageing Res Rev ; 84: 101819, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36526257

RESUMO

Acetylcholinesterase inhibitors (ChEI) are the global standard of care for the symptomatic treatment of Alzheimer's disease (AD) and show significant positive effects in neurodegenerative diseases with cognitive and behavioral symptoms. Although experimental and large-scale clinical evidence indicates the potential long-term efficacy of ChEI, primary outcomes are generally heterogeneous across outpatient clinics and regional healthcare systems. Sub-optimal dosing or slow tapering, heterogeneous guidelines about the timing for therapy initiation (prodromal versus dementia stages), healthcare providers' ambivalence to treatment, lack of disease awareness, delayed medical consultation, prescription of ChEI in non-AD cognitive disorders, contribute to the negative outcomes. We present an evidence-based overview of determinants, spanning genetic, molecular, and large-scale networks, involved in the response to ChEI in patients with AD and other neurodegenerative diseases. A comprehensive understanding of cerebral and retinal cholinergic system dysfunctions along with ChEI response predictors in AD is crucial since disease-modifying therapies will frequently be prescribed in combination with ChEI. Therapeutic algorithms tailored to genetic, biological, clinical (endo)phenotypes, and disease stages will help leverage inter-drug synergy and attain optimal combined response outcomes, in line with the precision medicine model.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/diagnóstico , Acetilcolinesterase/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico , Medicina de Precisão
11.
J Neurol ; 270(2): 711-725, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36342524

RESUMO

INTRODUCTION: During the last decade, physical activity (PA) (or "exercise") has been identified as one of the main modifiable factors that influence the development of Alzheimer's disease (AD) pathophysiology. We performed an umbrella review to summarize the evidence on the association between PA/exercise and the risk of developing AD risk, and the effect of exercise interventions on the progression of AD. METHODS: A systematic search was performed in PubMed, SportDiscus, Cochrane Library and Web of Science (March 2022) to identify meta-analyses assessing the association between PA and the incidence of AD, and assessing the effect of exercise interventions on patients with AD. RESULTS: Twenty-one studies were included. The results with strongest evidence revealed the positive effects of PA on AD risk. Specifically, meeting the WHO recommendations for PA was associated with a lower risk of AD. They also revealed positive effects of exercise on cognitive function, physical performance, and functional independence. CONCLUSIONS: There is strong evidence of a protective effect of regular PA against AD risk; however, the dose-response association remains unclear. Physical exercise seems to improve several dimensions in patients with AD, although research is warranted to elucidate the exercise characteristics that promote the greatest benefits.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/terapia , Doença de Alzheimer/psicologia , Cognição/fisiologia , Exercício Físico/fisiologia , Terapia por Exercício , Metanálise como Assunto
12.
Pharmacol Res ; 184: 106404, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35988869

RESUMO

Numerous clinical trials of anti-amyloid agents for Alzheimer's disease (AD) were so far unsuccessful thereby challenging the validity of the amyloid hypothesis. This lack of progress has encouraged researchers to investigate alternative mechanisms in non-neuronal cells, among which microglia represent nowadays an attractive target. Microglia play a key role in the developing brain and contribute to synaptic remodeling in the mature brain. On the other hand, the intimate relationship between microglia and synapses led to the so-called synaptic stripping hypothesis, a process in which microglia selectively remove synapses from injured neurons. Synaptic stripping, along with the induction of a microglia-mediated chronic neuroinflammatory environment, promote the progressive synaptic degeneration in AD. Therefore, targeting microglia may pave the way for a new disease modifying approach. This review provides an overview of the pathophysiological roles of the microglia cells in AD and describes putative targets for pharmacological intervention. It also provides evidence for microglia-targeted strategies in preclinical AD studies and in early clinical trials.


Assuntos
Doença de Alzheimer , Microglia , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides , Encéfalo , Humanos , Neurônios , Sinapses
14.
Ageing Res Rev ; 79: 101640, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35569785

RESUMO

INTRODUCTION: The World Health Organization has introduced the term 'intrinsic capacity' (IC) as a marker of healthy ageing. However, controversy exists on the definition and assessment of IC. We aimed to review the definitions and methods used for the assessment of IC in older adults. In addition, we proposed a new IC scoring method. METHODS: A systematic search was performed in PubMed, Web of Science, Cochrane Library, Scopus and SPORTDiscus (up to February 10th, 2022) for studies assesing IC in older adults (>60 years). RESULTS: Thirty-three studies were included. There is overall consensus on the definition of IC as well as on its different dimensions, that is: locomotion, vitality, sensory, cognition and psychological. However, the methods for assessing each of these five dimensions differ substantially across studies and there is no consensus on the best method to compute an eventual global compound score to evaluate IC taking into account all its different dimensions. CONCLUSIONS: The IC represents a highly relevant clinical concept that has been unfortunately underutilized. We propose a standardization for the assessment of each dimension of IC, with a global 0 (worst) to 10 (highest) score.


Assuntos
Envelhecimento Saudável , Idoso , Biomarcadores , Cognição , Humanos
15.
Front Pharmacol ; 13: 786475, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35496270

RESUMO

Novel effective therapeutic strategies are needed to treat brain neurodegenerative diseases and to improve the quality of life of patients affected by Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Amyotrophic Lateral sclerosis (ALS) as well as other brain conditions. At present no effective treatment options are available; current therapeutics for neurodegenerative diseases (NDs) improve cognitive symptoms only transiently and in a minor number of patients. Further, most of the amyloid-based phase III clinical trials recently failed in AD, in spite of promising preclinical and phase I-II clinical trials, further pinpointing the need for a better knowledge of the early mechanisms of disease as well as of more effective routes of drug administration. In fact, beyond common pathological events and molecular substrates, each of these diseases preferentially affect defined subpopulations of neurons in specific neuronal circuits (selective neuronal vulnerability), leading to the typical age-related clinical profile. In this perspective, key to successful drug discovery is a robust and reproducible biological validation of potential new molecular targets together with a concomitant set up of protocols/tools for efficient and targeted brain delivery to a specific area of interest. Here we propose and discuss Focused UltraSound aided drug administration as a specific and novel technical approach to achieve optimal concentration of the drug at the target area of interest. We will focus on drug delivery to the brain through the nasal route coupled to FUS as a promising approach to achieve neuroprotection and rescue of cognitive decline in several NDs.

16.
Drug Discov Today ; 27(9): 2440-2466, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35597514

RESUMO

The improvement in acute lymphoblastic leukaemia (ALL) treatment has led research efforts to focus on the unmet medical needs of an increasingly smaller patient cohort with resistant leukaemia and to develop more-targeted agents. Survival and response rates remain the most-prevalent endpoints in paediatric ALL research, but other intermediate clinical endpoints and molecular biomarkers for efficacy and mid- and long-term safety endpoints are also being investigated. The success of current ALL treatment appears to be driving new paradigms to optimise clinical drug development, while at the same time, regulatory tools in place are supporting meaningful drug development in the area.


Assuntos
Antineoplásicos , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Estudos de Coortes , Humanos , Marketing
17.
Drug Discov Today ; 27(5): 1483-1494, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35007767

RESUMO

New paediatric acute lymphoblastic leukaemia (ALL) treatments have been developed and innovative products are in the pipeline. However, despite many active clinical trials, bridging bench science to clinical development to authorised medicines remains challenging. Research in first-line treatment continues to focus on multidrug chemotherapy with the potential addition of new targeted molecules being studied. Research in second- and third-line treatment represents a shift from cytotoxic intensification to an area of precision medicine through emergent innovative and immuno-oncology products. The collaborative research model in ALL involving different stakeholders should intensify to facilitate bench-to-bedside clinical translation for the benefit of patients.


Assuntos
Antineoplásicos , Leucemia-Linfoma Linfoblástico de Células Precursoras , Antineoplásicos/uso terapêutico , Criança , Humanos , Oncologia , Medicina de Precisão , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico
18.
Ageing Res Rev ; 72: 101479, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34601135

RESUMO

AIMS: To assess the potential multi-domain benefits of exercise interventions on patients with Alzheimer's disease (AD), as well as to determine the specific effects of different exercise modalities (aerobic, strength, or combined training). METHODS: A systematic search was conducted in PubMed and Web of Science until March 2021 for randomized controlled trials assessing the effect of exercise interventions (compared with no exercise) on patients with AD. Outcomes included cognitive function (mini-mental state examination [MMSE] test), physical function (e.g., 6-minute walking test [6MWT]), functional independence (Barthel index), and neuropsychiatric symptoms (Neuropsychiatric Inventory [NPI]). A random-effects meta-analysis was conducted. RESULTS: 28 studies (total n = 1337 participants, average age 79-90 years) were included in the systematic review, of which 21 could be meta-analyzed. Although considerable heterogeneity was found, exercise interventions induced several significant benefits, including in Barthel index (n = 147 patients, mean difference [MD]=8.36 points, 95% confidence interval [CI]=0.63-16.09), 6MWT (n = 369, MD=84 m, 95% CI=44-133)), and NPI (n = 263, MD=-4.4 points, 95% CI=-8.42 to -0.38). Benefits were also found in the MMSE test, albeit significance was only reached for aerobic exercise (n = 187, MD=2.31 points, 95% CI 0.45-4.27). CONCLUSIONS: Exercise interventions appear to exert multi-domain benefits in patients with AD.


Assuntos
Doença de Alzheimer , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/terapia , Cognição , Exercício Físico , Terapia por Exercício , Humanos , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto
19.
Recenti Prog Med ; 112(10): 75e-84e, 2021 10.
Artigo em Italiano | MEDLINE | ID: mdl-34647542

RESUMO

Fabry disease (FD) is an X-linked lysosomal storage disorder resulting from the deficiency of the hydrolytic enzyme α-galactosidase A (α-Gal A), with consequent accumulation of globotrioasoylceramide in cells and tissues of the body, resulting in a multi-system pathology. Classically affected hemizygous males may display all the characteristic neurological (pain), cutaneous (angiokeratoma), renal (proteinuria, kidney failure), cardiovascular (cardiomyopathy, arrhythmia), and cerebrovascular (transient ischemic attacks, strokes) signs of the disease, while heterozygous females have symptoms ranging from very mild to severe. End-stage renal disease and cardiovascular or cerebrovascular complications limit life-expectancy of untreated patients. Demonstration of α-Gal A deficiency is the definitive method for the diagnosis of hemizygous males, while it's often inconclusive due to random X-chromosomal inactivation so that molecular testing (genotyping) of females is mandatory. The treatment options for FD are enzyme replacement therapy (ERT), and the oral pharmacological chaperone migalastat. Two different products, agalsidase alfa and agalsidase beta, have been commercially available in Europe for 20 years and they are both indicated for long-term ERT. In fact, clinical trials, observational studies and registry data have provided abundant evidence for the safety and efficacy of ERT in improving symptoms and disease progression. Agalsidase alpha and beta are two almost identical recombinant proteins although they are used clinically with a different dosage regimen. In this chapter we aim to clarify the differences between the two ERTs and how these can affect the pharmacokinetic/pharmacodynamic (PK/PD) characteristics and ultimately the risk/benefit profile. The chaperone migalastat, available in Europe since 2016, is the only oral treatment for FD, and acts stabilizing specific mutant forms of α-Gal, defined "amenable" to migalastat. A multitude of therapies are now under investigation in various phases of clinical trials. These include pegylated form of α-Gal (pegunigalsidase alpha), gene therapy (both in-vivo and ex-vivo methods), mRNA therapy (inducing production of α-Gal) and substrate reduction therapy (inhibitors of glucosylceramide synthase leading to reduction of Gb-3).


Assuntos
Doença de Fabry , alfa-Galactosidase , Terapia de Reposição de Enzimas , Doença de Fabry/diagnóstico , Doença de Fabry/tratamento farmacológico , Feminino , Humanos , Isoenzimas , Masculino , Proteínas Recombinantes/uso terapêutico , alfa-Galactosidase/genética , alfa-Galactosidase/metabolismo , alfa-Galactosidase/uso terapêutico
20.
Front Cell Neurosci ; 15: 730641, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34690702

RESUMO

Acidic pH shift occurs in many physiological neuronal activities such as synaptic transmission and synaptic plasticity but also represents a characteristic feature of many pathological conditions including inflammation and ischemia. Neuroinflammation is a complex process that occurs in various neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, and Huntington's disease. Acid-sensing ion channels (ASICs) represent a widely expressed pH sensor in the brain that play a key role in neuroinflammation. On this basis, acid-sensing ion channel blockers are able to exert neuroprotective effects in different neurodegenerative diseases. In this review, we discuss the multifaceted roles of ASICs in brain physiology and pathology and highlight ASIC1a as a potential pharmacological target in neurodegenerative diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...